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Abstract 

Model checking is an automated technique that can be 
used to determine whether a gs t em satisfies certain re- 
quired properties. To address the “state explosion” prob- 
lem associated with this technique, we propose to integrate 
assume-guarantee Verification at different phases of system 
development. During design, developers build abstract be- 
havioral models of the gs t em components and use them to 
establish key properties of the qs t e rn  To increase the scal- 
ability of model checking at this level, we have developed 
techniques that automatically decompose the verification 
task by generating component assumptions for  the prop- 
erties to hold. The design-level artifacts are subsequently 
used to guide the implementation of the system, but also 
to enable more eficient reasoning at the source code-level. 
In particula6 we propose to use design-level assumptions 
to similarly decompose the \>erijication of the actual system 
implementation. We demonstrate our approach on a sig- 
nificant NASA application, where design-level models were 
used to identih; and correct a safety propeny violation, and 
design-level assumptions allowed us to check successfully 
tha f the proper? was presen,ed b? the implementation. 

1. Introduction 

Our work is motivated by an ongoing project at NASA 
Ames Research Center on the application of automated ver- 
ification techniques to autonomous software. Autonomous 
systems involve complex concurrent behaviors for reacting 
to unpredicted environmental stimuli without human inter- 
vention. Extensive verification is a pre-requisite for the de- 
ployment of missions that involve autonomy. 

Given some formal description of a system and of a re- 
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quired property, model checking automatically determines 
whether the property is satisfied by the system. The lim- 
itation of the approach, commonly known as the “state- 
exploGon” problem, is the exponential relation of the num- 
ber of states in the system under analysis to the number of 
components of which the state is made [?SI. Model check- 
ing therefore does not scale, in general, to systems of real- 
istic size. 

The aim of our work is to increase the applicability and 
scalability of model checking by: 

1. applying it at different phases of software develop 
ment, and 

2. using compositional &e. divide and conquer) verifi- 
cation techniques that decompose the verification of a 
software system into manageable subparts. 

We believe that the verification of a safety critical system 
should be addressed as early as during its desip,  and should 
should go hand in hand with later phases of software de- 
velopment. Our experience working closely with the de- 
velopers of the control software for an experimental Mars 
Rover has been that several integration issues can be de- 
tected during system design. At that level, Verification of the 
system is typically more manageable and errors are easier 
and cheaper to fix since the system has not yet been imple- 
mented. Although system verification at the design level is 
undoubtedly important, there is little guarantee that the im- 
plemented system indeed satisfies the properties established 
at design time. We therefore need to provide a means of es- 
tablishing that system implementations preserve the proper- 
ties that have been demonstrated at the design level. 

During design, our work supports the verification of La- 
beled Transition Systems (LTSs) against safety properties 
expressed in terms of finite-state automata. LTSs are com- 
municating finite-state machines that can be used to de- 
scribe the behavioral interfaces of software or hardware 
components. Safety properties describe the legal (and il- 
legal) sequences of actions that a system can perform. 

In previous work, we developed novel techniques for 
performing automated assume-guarantee verification at the 



design level [9. 161. Assume-guarantee reasoning was orig- 
inally aimed at enabling the stepwise development of COII- 

current processes. but has more recently been used to de- 
compose the verification of large and complex systems. It 
is in the latter context that we use it in our work. 

Assume-guarantee reasoning first checks whether a com- 
ponent 11.1 guarantees a property P,  when it is part of a sys- 
tem that satisfies an assumption -4. Intuitively, A charac- 
terizes all contexts in which the component is expected to 
operate correctly. To complete the proof, it must also be 
shown that the remaining components in the system ( h f ‘ s  
environment), satisfy A. In contrast with previous assume- 
guarantee frameworks [8, 19,25,30], our techniques do not 
require human input in defining assumptions, but rather 
generate assumptions automatically, thereby increasing the 
accessibility of this kind of reasoning. 

The focus of the present work is to develop a methodol- 
ogy for using design artifacts to leverage the verification of 
the actual system implementation. To this aim, we propose 
to use the assumptions that are automatically generated dur- 
ing design-level verification to perform assume-guarantee 
reasoning at the implementation level. In general, we be- 
lieve that desizn-level assumptions can be used both dur- 
ing component development as an adjunct to traditional unit 
testing approaches, and during program validation, to en- 
able more efficient reasoning and to model non-software 
components, including the actual environment of a reactive 
system. For the latter, it may be the case that critical system 
properties can only be demonstrated under specific environ- 
mental assumptions that appear reasonable to the developer, 
but cannot be discharged because the environment is un- 
known (e.g., autoncmous systems). These assumptions can 
then be used to monitor, during deployment, the behavior of 
the environment, and trigger recovery actions when this be- 
havior falls outside the envelope defined by the assumption. 

1. a methodology for using the results of the modular 
analysis at the design level to improve the performance 
of verification tools at the code level; 

2. a program instrumentation technique for supporting 
assume-guarantee reasoning of Java programs using 
the Java PathFinder (JPF) model checker developed at 
NASA Ames [32]; and 

3. a significant case study demonstrating the applicability 
of our approach to a real NASA software system. 

The case study has been performed in the context of an on- 
going collaboration with the developers of the control soft- 
ware for an experimental Mars Rover. More specifically, 
we have used our techniques to verify several versions of 
the software both during its design, and during its imple- 
mentation, often using the results of our work to influence 
the design decisions of the developers. In this paper we will 
present how design-level models were used to identify and 

The work presented in this paper contributes: 

correct a safety property violation, and how design-level as- 
sumptions allowed us to check successfully that the prop- 
erty was preserved by the system implementation. 

Note that, even though our research to-date has fo- 
cused on checking implementations using software model- 
checking tools. we are aware of the fact that for complex 
software, even components may be too complicated to an- 
alyze exhaustively. In such cases, we intend to sacrifice 
exhaustiveness for the sake of scalability by using lighter- 
weight analysis techniques such as stateless model check- 
ing [17] or runtime analysis [20]. 

The remainder of the paper is organized as follows. We 
first provide some background on our design-level verifica- 
tion techniques in Section 2, followed by a description of 
the methodology that we propose in Section 3. Section 4 
presents our approach to model checking source code in an 
assume-guarantee style. Section 5 describes the experience 
and results obtained by the application of our methodology 
to a NASA system that was the focus of our case study. 
Finally, Section 6 presents related work and Section 7 con- 
cludes the paper. 

2. Background: Assume-guarantee verifica- 
tion at the design level 

In this section we give background on assume-guarantee 
reasoning and we describe the automated assu’me-guarantee 
frameworks that we have developed for reasoning about 
software systems at the design level. 

2.1. Assume-guarantee reasoning 

In the assume-guarantee paradigm a formula is a triple 
(,4) M ( P ) ,  where M is a component, P is a property, and 
A is an assumption about Ad’s environment. The formula 
is true if whenever M is part of a system satisfying A, then 
the system must also guarantee P. 

Consider for simplicity a system that is made up of com- 
ponents Ml and 442. To check that the system satisfies a 
property P without composing M I  with A42, one can ap- 
ply assume-guarantee reasoning as follows. The simplest 
assume-guarantee proof rule shows that if (-4) MI ( P )  and 
(true) M2 ( A )  hold, then (true) MI  ] I  h/r, ( P )  is true. 
This proof strategy can also be expressed as an inference 
rule: 

(Premise 1) ( A )  MI ( P )  
(Premise 2 )  (true) M2 (A) 

(true) MI II M2 ( P )  

Note that for the use of this rule to be justified, the as- 
sumption must be more abstract than M2, but still reflect 
M2’s behavior. Additionally, an appropriate assumption for 
the rule needs to be strong enough for to satisfy P.  
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Figure 1. iterative framework for assume- 
guarantee reasoning 

2.2. A4utomated assume-guarantee frameworks 

Several frameworks have been proposed [8,19,25,30] to 
support assume-guarantee reasoning. However. their practi- 
c d  impact has been limited because they require non-trivial 
human input in defining assumptions. In previous work 
[9,16] we developed novel frameworks to perform assume- 
guarantee reasoning in afully automatic fashion. The work 
was done in the context offinite labeled transition systems 
with blocking communication and safety properties. 

In [ 161, we present an approach to synthesizing the as- 
sumption that a component needs to make about its environ- 
ment for a given property to hold. The assumption produced 
is the weakest, that is, it restricts the environment no more 
and no less than is necessary for the component to satisfy 
the property. The automatic generation of weakest assump 
tions has direct application to the assume-guarantee proof; 
it removes the burden of specifying assumptions manually 
thus automating this type of reasoning. 

The algorithm presented in [ 161 does not compute partial 
results, meaning no assumption is obtained if the computa- 
tion runs out of memory, which may happen if the state- 
space of the component is too large. We address this prob- 
lem in [9], where we present a novel framework for per- 
forming assume-guarantee reasoning using the above rule 
in an incremental and fully automatic fashion. This frame- 
work is illustated in Figure 1. 

At each iteration, a learning algorithm is used to build 
approximate assumptions Ai, based on qzierying the sys- 
tem and on the results of the previous iteration. The 
two premises of the compositional rule are then checked. 
Premise 1 is checked to determine whether M I  guarantees 
P in environments that satisfy Ai. If the result is false, it 
means that this assumption is too weak, and therefore needs 
to be strengthened with the help of the counterexample pro- 
duced by checking premise 1. If premise 1 holds, premise 2 
is checked to discharge Ai on Mz. If premise 2 holds, then 
the compositional rule guarantees that P holds in Ml 11 -M2. 
If it doesn't hold, further analysis is required to identify 
whether P is indeed violated in MI 11 M2 or whether Ai is 
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Implementations 

Figure 2. Verification at design and code level 

stronger than necessary, in which case it needs to be weak- 
ened. The new assumption may of course be too weak, and 
therefore the entire process must be repeated. This process 
is guaranteed to terminate; in fact, it converges to an as- 
sumption that is necessary and sufficient for the property to 
hold in the specific system. 

Recently, we have extended our frameworks to handle 
circular rules and more than two components. We have 
implemented the frameworks in the LTSA model-checking 
tool 1261 and have applied them to the verification of several 
design models of NASA software systems. 

3. Methodology 

This section describes our methodology for using the ar- 
tifacts of the design-level analysis in order to decompose 
the verification of the implementation of a software system. 

To address the scalability issues associated with software 
model checking, our approach, illustrated in Figure 2,  in- 
tegrates assume-guarantee reasoning of concurrent systems 
at the design and at the implementation level. At the de- 
sign level, the architecture of a system is described in terms 
of components and their behavioral interfaces modeled as 
LTSs. Design level models are intended to capture the de- 
sign intentions of system developers, and allow early verifi- 
cation of key integration properties. 

For example, consider a system that consists of two de- 
sign level components A41 and M2, and a global safety 
property P (describing the sequence of events that the sys- 
tem is allowed to produce, or equivalently the bad behav- 
iors that the system must avoid). To check in a more scal- 
able way that the composition 1 1  M2 satisfies P, we 
use the assume-guarantee frameworks described in the pre- 
vious section. We expect that, with the feedback obtained 
by our verification tools, the developers of the system will 
correct their models until the property is achieved at the de- 
sign level. At that stage, our frameworks will have automat- 
ically generated an assumption A that is strong enough for 
MI to satisfy P but weak enough to be discharged by M2 

(i.e. ( A )  MI ( P )  and (true) M2 (-4) both hold). 



To then establish that the property is preserved by the 
actual implementation. our approach uses the automati- 
cally generated assumption -4. to perform assume-guarantee 
reasoning at the source code level. The implementation 
is decomposed as specified by the architecture at the de- 
sign level &e. components ll and I2 implementing Lldl 
and 1\42> respectively; see Figure 2): and we establish that 
(true) I1 1 1  I2 ( P )  holds by checking that (-4) 1 1  (P) and 
(true) I2 (-4). If the two premises are true then the cor- 
rectness of the assume-guarantee rule guarantees that the 
property is preserved by the implementation. If any one of 
the two premises does not hold, then the counterexample(s) 
obtained expose some incompatibility between the models 
and the implemkntations, and are used to guide the devel- 
opers in correcting the implementation, the model, or both. 

Alternatively, one may wish to check preservation of 
properties by checking directly that each implemented com- 
ponent refines its model. In our experience, for well de- 
signed systems, the interfaces between components are 
small, and the assumptions that we generate are much 
smaller than the component models. Moreover, the con- 
trollability information that we use to derive these assump- 
tions, and the fact that we take the properties into account in 
building them, typically allow us to achieve further reduc- 
tion than abstraction techniqucs that would merely simplify 
models based on component interfaces [ 161 

The software architecture of a system may not always 
provide the best decomposition for verification [7]. How- 
ever, we currently focus on this line of research because 
one of our target applications is the Mission Data Sys- 
tems architecture (MDS) [ 12I.MDS allows adaptations to 
be constructed by configuring instantiations of components 
with an ADL. We are interested in enriching critical com- 
ponents of the MDS system with models describing their 
abstract behavioral interfaces, and relating the analysis of 
these models with analysis of the resulting implementation. 

4. Assume-guarantee analysis of software 

In this section, we describe the main challenges in ex- 
tending the Java Pathfinder software model checker to per- 
form assume-guarantee reasoning, with assumptions and 
properties expressed as finite-state machines. Although 
we make our presentation in the context of Java programs, 
our approach extends to other programming languages and 
model checkers. 

4.1. Java PathFinder 

For checking Java implementations, we use Java 
PathFinder (PF) [32]. JPF is an explicit-state model 
checker that analyzes Java bytecode classes directly for 
deadlocks and assertion violations. JPF is built around 

a special-purpoce Java Virtual Machine (JVM) that al- 
lows Java programs to be analyzed. JPF supports depth- 
first. breadth-first as well as heuristic search strategies to 
guide the model checker's search in cases where the state- 
explosion problem is too severe [18]. 

In addition to the standard language features of 
Java, IPF uses a special class V e r i f y  that al- 
lows users to annotate their programs so as l )  to 
express non-deterministic choice with methods V e r  - 
i f y .  random(n) a n d V e r i f y . r a n d o m B o o l 0  and2) 
to truncate the search of the state-space with method V e r -  
i f y .  ignoreIf ( c o n d i t i o n ) ,  when the condi t ion  
becomes true. Methods V e r i f y .  begimtomic ( )  and 
V e r i f y .  e n d A t o m i c  ( ) respectively indicate the start 
and end of a block of code that the model cheker should 
treat as one atomic statement and not interleave its execu- 
tion with any other threads. 

4.2. Mapping and instrumentation 

We instrument Java programs to perform assume- 
gurantee reasoning using Java PathFinder. In our frame- 
work, both assumptions and properties are expressed as de- 
terministic finite-state machines. For example, consider a 
program that opens and closes files. The assumption illus- 
trated in Figure 3 expresses the fact that the environment 
will always open a file before closing it, and will always 
perform these actions in alternation. Any different behav- 
ior with respect to these actions leads the assumption to the 
ignore state, which reflects the fact that such behavior 
will never be exercised in the context of the environment 
that the assumption represents. On the other hand, the prop- 
erty illustrated in Figure 4 expresses the fact that the system 
is required to always open a file before closing it, and to 
always perform these actions in alternation. Any behavior 
that does not conform to this pattern is violating, and will 
be trapped in the e r ror  state. 

At the source code level, assumptions and properties will 
be used to examine the behavior of the system and check 
whether behaviors that are not ignored by the assumption 
may be trapped by the property, meaning that the property 
is violated under the specific assumption. A necessary step 
in our approach is therefore a mapping between actions that 
appear in the design-level assumptions and properties, and 
events that occur in the software. For simplicity, we are 
assuming that actions in our design models correspond in 
the software either to method calls 01: to the locking and 
unlocking of objects. 

The software must then be instrumented so that each 
event that appears in the mapping gets trapped, and is used 
in examining its effects on the state of the assumption and 
property. Presently, this instrumentation is done by hand, 
but we are considering the use of automated tools such as 



Example assumption 

public static void event ( )  { 

Figure 4. Example property 

Verify.beginAtomic 0 
String threadName = Thread. currentThread ( 1  . getName ( ) ; 
Throwable throwable = new Throwable ( )  ; 

StackTraceSlement st = (throwab1e.getStackTrace ( )  ) [11 ; 
String methodName = st. getMe2hodName ( ) ; 
String className = st.getClassName0 ; 
int eventID = getEvent(classNane, methomame, threadName); 
AGAssumption. event (eventID) ; 
AG-Property. event (eventID) ; 
verify. endqtomic ( ; 

Figure 5. Method event of class A G M o n i t o r  

[20]. We have to date experimented with the use of icon- 
tract [23], but unfortunately encountered bugs in the soft- 
ware which could not be fixed because the tool is no longer 
being supported. 

Our instrumentation adds at each point where an event 
occurs, a method call A G M o n i t o r  . event ( ) , which 
traps the event and calls methods of the assumption and the 
property. This method, shown in Figure 5, uses Java reflec- 
tion to determine the name of the thread making the method 
call (line 2), the method being c d e d  (lines 3 - 3 ,  and the 
class that contains the method (line 6). These three pieces 
of information are used as a key to look up the correspond- 
ing event from the design level model (line 7). Then, this 
event is passed on to the assumption (line 8) and to the prop- 
erty (line 9). The entire block is enclosed by JPF directives 
(lines 1 and 10) which instruct it to treat the method body 
as an atomic step and to interleave no other threads with the 
execution of this method. 

If more information is needed to determine the mapping 
between the Java program and the events from the design- 
level model, then the event method can be extended to 
allow parameters to be passed tha€ contain this extra infor- 
mation. This was necessary in our case study to obtain in- 
formation about parameters being passed into method calls, 
parameters being returned from method calls, and to trap 
locks and unlocks of objects. 

Properties and assumptions are implemented by classes 
A G A s s u m p t i o n  and A G - P r o p e r t y .  An excerpt of the 
A G A s s u m p t i o n  class is shown in Figure 6.  This class 
has a static integer field that records the current state of the 
assumption automaton (line 1) and a transition table that 

public class AGAssumption { 
1) private static int state = 0; 
2 )  private static intt] [I trans; 

- _ .  
public static void event(int e) { 

3 )  state = trans [state] [el ; 
4) Verify.ignoreIf(state < 0 ) ;  

1 )  
Figure 6. Class A G A s s u m p t i o n  (excerpt) 

stores the transitions (line 2).  The ignore state of the as- 
sumption is represented by a state with an ID less than zero. 
The method event advances the assumption by looking up 
the next state in the transition table (line 3). If the state is 
less than 0, this represents that the current execution does 
not satisfy the assumption and that JPF should not continue 
exploring this path (line 4). The current path does not need 
to be further explored, since we are only interested in prop- 
erty violations that occur under the given assumption. 

The A G - P r o p e r t y  class is similar, except a state with 
an ID less than zero represents the error  state and line 4 
is replaced by assert ( s t a t e  >= 0 ) .  This instructs 
P F  to detect a property violation and produce a counter- 
example trace if the e r r o r  state of the property is reached. 

4.3. Environment modeling 

The process-algebra based models that are supported by 
our design-level tools can be checked in a straightforward 
way both in isolation and in combination with other mod- 
els. In contrast to these, software model checkers such as 
JPF analyze executable programs, and as such, expect com- 
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plete programs as input. Therefore. to analyze system com- 
ponents in isolation in an assume-guarantee style, one must 
provide for each component an appropriate abstract envi- 
ronment that will enable its analysis. In essence, such envi- 
ronments provide stubs for the methods called by the com- 
ponent that are implemented by other components, or drive 
the execution of a component by calling methods that the 
component provides to its environment. 

In our experiments, we used universal environments, that 
may invoke any provided operation in a component's inter- 
face or refuse any required operations in any order. Tools 
that build such environments for Java programs are pre- 
sented in [31]. 

4.4. Analysis of implementations 

For checking implementations, we instrument the source 
code to perform assume-guarantee reasoning (as described 
above) and we use off-the shelf software model checking 
tools (i.e. Java PathFinder for the analysis of Java pro- 
grams). Note that, for complex software, even components 
may be too large to analyze exhaustively; abstraction and 
slicing techniques (e.g. [lo]) could be used to make analy- 
sis of software components more tractable. Alternatevely, 
our approach could sacrifice exhaustiveness for the sake of 
scalability by using lighter-weight techniques such as state- 
less model checking [ 171 or runtime analysis [20]. 

5. Case study 

Our case study is the planetary rover controller K9, and 
in particular its executive subsystem, developed at NASA 
Ames Research Center. It has been performed in the con- 
text of an ongoing collaboration with the developers of the 
Rover, where verification and development go hand-in-hand 
to increase the quality of the design and implementation of 
the system. 

In this section we describe how we used our assume- 
guarantee frameworks to check a key property on the de- 
sign models of the executive and to automatically generate 
an appropriate assumption. We show how this assumption 
was used to perform assume-guarantee model checking of 
source code with JPF and how this compares to the mono- 
lithic (Le. non-compositional) analysis of the executive's 
Java implementation. 

5.1. System description 

The executive receives flexible plans from a planner, 
which it executes according to the plan language seman- 
tics. A plan is a hierarchical structure of actions that the 
Rover must perform. Traditionally, plans are deterministic 
sequences of actions. However, increased Rover autonomy 

I lann<r 
b 

Figure 7. The Executive of the K9 Mars Rover 

requires added flexibility. The plan language therefore al- 
lows for branching based on state or temporal conditions 
that need to be checked, and also for flexibility with respect 
to the starting time of an action. 

The executive needs to monitor the state of the Rover and 
of the environment to take appropriate paths in a flexible 
plan that it executes. It has been implemented as a multi- 
threaded system (see Figure 7), made up of a main coordi- 
nating component named Executive. components for moni- 
toring the state conditions ExecCondChecker, and temporal 
conditions ExecEmerChecker - each further decomposed 
into two threads - and finally an ActionEaecution thread that 
is responsible for issuing the commands to the Rover. The 
executive has been implemented as 25K lines of C++ code, 
10K of which is the main control code, and the rest defines 
data structures that are needed for the communication with 
the actual Rover. The software makes use of the POSIX 
thread library, and synchronization between threads is per- 
formed through mutexes and condition variables. 

5.2. Design-level analysis 

The developers provided their design documents that de- 
scribed the synchronization between components in an ad- 
hoc flowchart-style notation. These were in essence ex- 
tended control-flow graphs of the threads, and focused on 
such things as method calls, (un-)locking mutexes and wait- 
for and signaling of condition variables. They looked very 
much like LTSs, which allowed us to translate them in 
a straightforward and systematic, albeit manual, way into 
about 700 lines of FSP code. FSP is the input language of 
the LTSA tool, in which we have implemented our assurne- 
guarantee frameworks described in Section 2. To achieve 
a close correspondence between the FSP code and the de- 
sign diagrams, we first built models for mutexes, condition 
variables, and their associated methods. These models pro- 
vided an infrastructure on top of which the actual threads of 
the system were modeled. 

Model checking of the design models uncovered a num- 
ber of synchronization problems such as deadlocks and data 
races. Moreover, the models were used for quick expen- 
mentation with alternative solutions to existing defects. The 



study tha t  \ve present !KW focuses on the foilon inp property 
that w’as formulated by the developer. 

Property. For the \xiable sai,edTI~iX-e~‘pSrr-Lcct of the ES- 
ecCondC1zec-X-er that is shared with the Execurii,e (see Fig- 
ure 7). the property states that: “if the Executiw thread 
reads the value of the variable, then the Ex-ecCondChecker 
should not read this value until the Executive clears it first”. 
The property was represented in terms of two states corre- 
sponding to the shared variable being cleared or not cleared, 
and an error state as discussed in the previous section. 

Analysis. The developer expected the property to be satis- 
fied by the ExecCondCltecker and the Executive inespec- 
tive of the behavior of other threads. Our analysis was 
therefore performed on these h e a d s  together with the mu- 
texes they use, since mutexes are the way in which syn- 
chronization issues are resolved in the system. We applied 
assume-guarantee reasoning as supported by our techniques 
described in Section 2, where assumptions were generated 
for the ExecCondChecker (module MI) and discharged by 
the Executive (module M?). 

The weakest assumption consists of 6 states and descrip- 
tion an environment where “whenever the Executive reads 
the savedWakeUpStrzrct variable after acquiring mutex exec, 
it should hold on to the mutex until it clears the variable”. 
This assumption could not be discharged on the Executive. 
The counter-example obtained describes the following sce- 
nario: if the Executive reads savedWabUpStruct and de- 
cides that the variable points to an irrelevant condition, it 
performs a wait on a condition variable associated with the 
exec lock. The wait causes the exec lock to be released au- 
tomatically. The problem was fixed by adding to the Ex- 
ecutive a statement that clears savedWuke UpStrucf before 
checking whether the condition contained there is relevant. 

5.3. Implementation analysis 

Set-up. We analyzed a Java translation of this code, which 
was used in a case-study described in [5]. The translation 
was done selectively and it focused on the core functionality 
of the executive (the rest of the components being stubbed). 
The translated Java version is approximately 7.2 Kloc and 
it contains all the components of Figure 7, where each com- 
ponent (except the Database) executes as a separate thread. 

In our experiment, we concentrated on a subsystem con- 
sisting of the Executive and ExecCondChecker threads (all 
the other threads were not started), and we analyzed this 
system for a very simple input plan, that consists of one 
node and no time conditions (which are not relevant for the 
analysis of the subsystem). JPF was able explore exhaus- 
tively the state-space of this subsystem (any other config- 
uration, i.e. starting more threads or more complex input 
plans would force JPF to run out of memory). This sub- 

system is snisli enough ro he man-agshle b\, JPF, and thus 
to provide a baseline for comparison wiih modular verifi- 
cation. but i t  still contains enough details about the inter- 
actions betiveen the Ex-ecuti1.e and the E.recCoridCl2ecker 
threads. which were the focus of the desi,on-level analysis. 

To evaluate the merits of assume-guarantee verification 
using the automatically generated design-level assumption, 
we broke up the system in two components I1 and 1 2  repre- 
senting the ExecCondChecker and the Executive threads re- 
spectively, and we checked the two premises of the assume- 
guarantee rule. 

Environment modeling. As was mentioned in Section 4, to 
check components I1 and 12 in isolation, we need to identify 
the interface between them so we can generate environment 
models to make them closed. 

To check premise 1, we built a universal environment to 
drive Il (the ExecCondChecker), that invokes any sequence 
of operations in the class ExecCondChecker’s interface 
(see Figure 8). 

This driver loops forever generating events (line 1). It 
begins by making a non-deterministic choice of whether 
or not to acquire the lock on the Executive object (line 2). 
If it acquires the lock (line 3), we then use a specialized 
form the of AGMoni tor. event method to trap the lock 
event (line 4). The universal environment then makes a non- 
deterministic choice (line 5). Depending on the results of 
this choice, zero or more events are generated while the lock 
is held (lines 6- IO). These events include method calls that 
access savedWakUpStruct which is shared between the two 
threads (Le. condchecker . deleteSavedWakeup ( ) 
and condchecker . getSavedWakeup ( ) and meth- 
ods that add and remove conditions to and from a list struc- 
ture in ExecCondChecker. Once the universal environ- 
ment is done generating events, it generates an event sigal- 
ing that the lock is to be released (line 11) and then leaves 
the synchronized block. If the choice was made to not ac- 
quire the lock on line 2, then the universal environment gen- 
erates a single event (lines 12-16). 

To maintain a finite number of elements in the 
list of conditions, we added an annotation forcing 
JPF to backtrack if more than one call to cond- 
Checker ~ addconditioncheck ( )  is made; this is a 
reasonable assumption, since we considered a configuration 
where the input plan has only one node (and only one con- 
dition could be added for it). 

To check premise 2, we built stubs that implement the 
methods invoked in component I1 by Iz. Some care needed 
to be taken when doing this. For example, the getSaved- 
Wakeup ( ) method can either return null or an object. To 
simulate this, the method stub would non-deterministically 
choose which to return. 

Analysis. We used JPF and the property ( P )  and assump- 
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class Executive { _ . .  

1) while(true) { 
2 )  if (Verify.randomBool0 ) { 
3 )  synchronized (exec) { 
4 )  AGMonitor.event ("Executive", "lock") ; 
5 )  while (Verify.randomBoo1 0) { 
6 )  switch(Verify.random(4) 1 { 
7 )  case 0: condChecker.deleteSavedWakeup0; break; 
8 )  case 1: condChecker.getSavedWakeup0 ; break; 
9 )  case 2: condChecker.addConditionCheck(id, . . .  ) ;  break; 
10) case 3: condChecker.removeConditionCheck(id, . . .  ) ; break; 

11) AGMonitor .event ("Executive", "unlock" ) ; } 

12) switch(Verify.random(4)) { 
13) case 0 :  condChecker.deleteSavedWakeup0; break; 
14) case I: condChecker.getSavedWakeup0; break; 
15) case 2: condChecker.addConditionCheck(id, . . .  ) ;  break; 
16) case 3: condChecker.removeConditionCheck(id, . . .  ) ;  break; 

public void run0 { . . . 

1 )  
} else { 

I ) ) } )  
Figure 8. Universal driver 

tion (A)  that were used in the design level analysis to check 
the property monolithically (i.e., on the whole subsystem) 
and modularly (i.e. we checked premise 1: (A) 11  ( P )  and 
premise 2: (true) 12 ( A ) ) .  In both cases, we discovered the 
same error that was discovered at the design level. After we 
corrected the error, we repeated the checks. While the prop- 
erty was shown to hold on the whole sub-system, we were 
surprised to find out that premise 1 would not hold, i.e. as- 
sumption A was not strong enough to make the property 
hold. After looking back at the design model, we noticed 
that the system for which we had generated the assumption 
also encoded a different assumption, according to which 
all accesses to savedWakeupStruc1 by the Executive thread 
would be protected by the exec lock. This assumption was 
encoded explicitely at the indications of the developer who 
gave us the initial models (the assumption was subsequently 
discharged on Mz).  Using this new assumption, we checked 
that the property holds (Le. we checked that (AAA') I1 ( P )  
holds and we discharged both assumptions on 4). 

Results and discussion. Our experiments were run on a 
Intel Xeon 2.2 Ghz machine with 4Gb of memory (although 
a single process could only access 2Gb of memory). This 
system is running RedHat Linux version 8.0 with Sun's Java 
version 1.4.2-01. We used JPF version 2.4 using the -no- 
verify-print, -no-deadlocks, and -verbose flags. 

Table 1 gives the results of the experiment. The System 
column describes the system being analyzed. The States 
and Transitions columns report the number of states and 
transitions explored by JPF. The Memory and Time report 
the amount of memory needed and the time taken to per- 

form the analysis. 
The Whole System rows give the results for checking 

the property monolithically. The version marked bug cor- 
responds to the original system in which the property does 
not hold while the other version has had the bug fixed so 
that the property does hold. 

The Premise 1 lines report the results of verifying 
premise 1. As was mentioned previously, while performing 
the verification, we discovered that an additional assump- 
tion, -4' was needed to complete the verification. We looked 
at two ways of incorporating this assumption into the anal- 
ysis. The first uses the universal environment shown in Fig- 
ure 8 and uses an automaton representation of A', as shown 
in the AGAssumption class in Figure 6. The second uses 
a modified universal assumption that directly encodes A'. 
This is done by replacing lines 12-16 of the universal as- 
sumption with code that makes a choice only between the 
two events on lines 15 and 16. The bug that caused a vio- 
lation of the property in the monolithic analysis was in the 
Executive, not the ExecConditionChecker, so these analyses 
were not affected by the presence or absence of the bug. 

The Premise 2 lines report the results for checking 
premise 2,  in which the assumptions used in checking 
Premise 1 need to be discharged. We discharged the as- 
sumptions A and -4' separately, on the system containing 
the bug and on the system in which the bug is fixed. 

From Table 1, we can see that the compositional ap- 
proach to verification does reduce the number of states that 
JPF needs to explore and the amount of memory necessary 
for the analysis in the version of the Rover that does not 
contain the bug. The results from checking Premise 1 show 
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System States 1 Transitions ,Ifemor> (Mb) I Time - 
Whole System 153.132 1 325.64 1 952.85 12m. 23s 

i Whole System !bug) 1 
Premise 1, -4‘ as automaton 
Premise 1, -4’ encoded 
Premise 2, Assumption -4 

Premise 2, Assumption A’ 
Premise 2, Assumption -4 (bug) 

Premise 2, Assumption A’ (bug) 

that the encoding of the assumption can affect the perfor- 
mance of the model checker. We plan to investigate this in 
the future. 

This case study demonstrates that the use of design level 
assumptions has merits in improving the performance of 
source code inodel checking. Our experimental work is of 
course preliminary. and we are planning to carry out larger 
case studies to validate our approach. 

255 I 338 ‘ 23.07 10s 
60,830 134.177 3 15.98 6m. 55s 
53.215 117,756 255.96 4m. 49s 
13,884 20,60 1 118.97 Im, 16s 

145 144 44.49 20s 
13,884 1 20,601 109.58 lm,7s 
13,883 I 20.601 121.37 49s 

6. Related work 

It is well known that software defects are less costly the 
earlier they are removed in the development process. To- 
wards this end, a number of researchers have worked on 
applying model checking to artifacts that appear throughout 
the software life-cycle, such as requirements [3,21], archi- 
tectures and designs [ l. 27,291 and source code [4,6,10,13, 
321. Our work integrates the analysis performed at different 
levels, using assume-guarantee reasoning. 

Assume-guarantee reasoning is based on the observation 
that large systems are being build from components and that 
this composition can be leveraged to improve the perfor- 
mance of analysis techniques. Formal techniques for sup- 
port of component-based design are gaining prominence, 
see for example [ 1 11. To reason formally about components 
in isolation, some form of assumption (either implicit or ex- 
plicit) about the interaction with, or interference from, the 
environment has to be made. Even though we have sound 
and complete reasoning systems for assume-guarantee rea- 
soning, see for example [& 19,25,30], it is always a mental 
challenge to obtain the most appropriate assumption. 

It is even more of a challenge to find automated tech- 
niques to support this style of reasoning. The thread modu- 
lar reasoning underlying the Calvin tool [ 141 is one start in 
this direction. The Mocha toolkit [2] provides support for 
modular verification of components with requirement spec- 
ifications based on the Alternating-time Temporal logic. 

More recently, Henzinger et al. [22] have presented a 
framework for thread-modular abstraction refinement, in 
which assumptions and guarantees are both refined in an 

iterative fashion. The framework applies to programs that 
communicate through shared variables, and, unlike our ap- 
proach where assumptions are controllers of the component 
that is being analyzed, the assumptions in [22] are abstrac- 
tions of the environment components. The work of Flana- 
o m  and Qadeer also focuses on a shared-memory commu- 
nication model [15], but does not address notions of ab- 
stractions as is done in [22] . Jeffords and Heitmeyer use 
an invariant generation tool to generate invariants for com- 
ponents that can be used to complete an assume-guarantee 
proof [24]. While their proof rules are sound and complete, 
their invariant generation algorithm is not guaranteed to 
produce invariants that will complete an assume-guarantee 
proof even if such invariants exist. 

7. Conclusions 

We presented an approach for integrating assume- 
guarantee verification at different phases of system devel- 
opment. to address the scalability issues associated with the 
verification of complex software systems. Our approach 
uses the results of modular analysis at the design level to 
improve the performance of verification at the code level. 
We gave a program instrumentation technique for support- 
ing assume-guarantee reasoning of Java programs using the 
Java PathFinder model checker: our approach easily extends 
to other programmming languages and model checkers. We 
also presented a significant case study demonstrating the 
applicability of our approach to a realistic NASA software 
system. To evaluate how useful our approach is in prac- 
tice, we are planning its extensive application to other real 
systems. However, our early experiments provide strong 
evidence in favor of this line of research. 

In the future, we plan to look at ways to better auto- 
mate the process of code annotation and environment gen- 
eration. Additionally, we plan to investigate lighter-weight 
techniques such as stateless model checking or run-time 
verification in the context of our methodology. Finally, we 
plan to evaluate the use of other design-level artifacts to im- 
prove the performance of verification at source-code level. 
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